Cancer Link and Food Sources
Nitrate (NO3) is a molecule that has received a lot of bad press over the years. It is thought to promote digestive cancers, in part due to its ability to form carcinogens when used as a preservative for processed meat. Because of this (1), nitrate was viewed with suspicion and a number of countries imposed strict limits on its use as a food additive.
But what if I told you that by far the greatest source of nitrate in the modern diet isn't processed meat-- but vegetables, particularly leafy greens (2)? And that the evidence linking exposure to nitrate itself has largely failed to materialize? For example, one study found no difference in the incidence of gastric cancer between nitrate fertilizer plant workers and the general population (3). Most other studies in animals and humans have not supported the hypothesis that nitrate itself is carcinogenic (4, 5, 6), but rather that they are only carcinogenic in the context of processed meats due to the formation of carcinogenic nitrosamines. This, combined with recent findings on nitrate biology, has changed the way we think about this molecule in recent years.
A New Example of Human Symbiosis
In 2003, Dr. K. Cosby and colleagues showed that nitrite (NO2; not the same as nitrate) dilates blood vessels in humans when infused into the blood (7). Investigators subsequently uncovered an amazing new example of human-bacteria symbiosis: dietary nitrate (NO3) is absorbed from the gut into the bloodstream and picked up by the salivary glands. It's then secreted into saliva, where oral bacteria use it as an energy source, converting it to nitrite (NO2). After swallowing, the nitrite is reabsorbed into the bloodstream (8). Humans and oral bacteria may have co-evolved to take advantage of this process. Antibacterial mouthwash prevents it.
Nitrate Protects the Cardiovascular System
In 2008, Dr. Andrew J. Webb and colleagues showed that nitrate in the form of 1/2 liter of beet juice (equivalent in volume to about 1.5 soda cans) substantially lowers blood pressure in healthy volunteers for over 24 hours. It also preserved blood vessel performance after brief oxygen deprivation, and reduced the tendency of the blood to clot (9). These are all changes that one would expect to protect against cardiovascular disease. Another group showed that in monkeys, the ability of nitrite to lower blood pressure did not diminish after two weeks, showing that the animals did not develop a tolerance to it on this timescale (10).
Subsequent studies showed that dietary nitrite reduces blood vessel dysfunction and inflammation (CRP) in cholesterol-fed mice (11). Low doses of nitrite also dramatically reduce tissue death in the hearts of mice exposed to conditions mimicking a heart attack, as well as protecting other tissues against oxygen deprivation damage (12). The doses used in this study were the equivalent of a human eating a large serving (100 g; roughly 1/4 lb) of lettuce or spinach.
Mechanism
Nitrite is thought to protect the cardiovascular system by serving as a precursor for nitric oxide (NO), one of the most potent anti-inflammatory and blood vessel-dilating compounds in the body (13). A decrease in blood vessel nitric oxide is probably one of the mechanisms of diet-induced atherosclerosis and increased clotting tendency, and it is likely an early consequence of eating a poor diet (14).
The Long View
Leafy greens were one of the "protective foods" emphasized by the nutrition giant Sir Edward Mellanby (15), along with eggs and high-quality full-fat dairy. There are many reasons to believe greens are an excellent contribution to the human diet, and what researchers have recently learned about nitrate biology certainly reinforces that notion. Leafy greens may be particularly useful for the prevention and reversal of cardiovascular disease, but are likely to have positive effects on other organ systems both in health and disease. It's ironic that a molecule suspected to be the harmful factor in processed meats is turning out to be one of the major protective factors in vegetables.
No comments:
Post a Comment