They also found that in the subset of children not already taking vitamin D supplements, the effect was greater, with unsupplemented children contracting nearly three times as many influenza A infections as children receiving vitamin D. They didn't analyze the influenza B or total influenza incidence in that way, so we don't know if prior supplementation makes a difference there.
The most striking finding of the paper is that the vitamin D group suffered from 6 times fewer asthma attacks than the placebo group. This needs to be repeated but it's consistent with other data and I find it very encouraging.
The paper did have some limitations. They didn't measure vitamin D status so they have no way to know exactly how effective their pill-based supplements were.
Another problem is that they began collecting data immediately after beginning supplementation. Vitamin D is a fat-soluble vitamin that can take 3 months to reach maximum concentration in the body following supplementation. By the time the children were reaching their maximum serum concentration of vitamin D, the trial was over. It would be nice to see the next trial begin supplementation in the fall and look at flu incidence in the winter.
This paper comes on the heels of another showing that vitamin D is necessary for the activation of an immune cell called the killer T cell (2). These are important for resistance to infections and cancer. Overall, these papers add to the accumulating evidence that vitamin D is important for the proper functioning of the human immune system. However, mice may not be the best model for use in studying vitamin D biology. From the first paper:
The evolution of different mechanisms for the regulation of PLC-?1 activity in human and mouse T cells parallels the development of divergent VDR-dependent and VDR-independent antimicrobial pathways in human and mouse macrophages31, respectively, and may reflect the fact that mice are nocturnal animals with fur and humans are daytime creatures that synthesize vitamin D in the skin after exposure to ultraviolet light.In other words, mice don't use vitamin D in the same way as humans because they have a different evolutionary relationship to it.
No comments:
Post a Comment